SUMMARY

This report details the results of fieldwork undertaken by the Sussex Archaeological Society in and around the village of Bishopstone, East Sussex, during August and September 2002. The investigation, which involved an extensive geophysical survey covering open areas, within both the core and on the periphery of the settlement, followed by the excavation of 59 test-pits, revealed that several of the village’s ‘green’ spaces harbour well-preserved archaeological remains. At least one post-in-trench building, together with associated pits, post- and stake-holes comprise evidence for a penumbra of Late Anglo-Saxon to Saxo-Norman occupation outside the St Andrew’s parish church cemetery which caps a prominent chalk spur on the eastern side of a reclaimed tidal inlet. Also discovered within the village core were two burials which, on stratigraphic grounds, could be part of a contracted portion of a pre-Conquest ‘minster’ cemetery. Investigations on the western slopes of the spur, which stretch down to the alluvial margins of the valley, revealed a more dispersed spread of activity including a Saxo-Norman boundary feature, evidence for later medieval occupation, and the foundations of post-medieval outbuildings possibly related to the site of Bishopstone Place, a manorial residence demolished in 1831.

These preliminary discoveries confirm that there is considerable potential for further archaeological investigation to reveal the morphology of the early settlement which grew up around a pre-Conquest minster church of St Andrew’s. In a wider context, these results, as a foundation for future research, will contribute valuable new evidence for investigating the origins of nucleated settlement in the lower Ouse Valley. The palimpsest of evidence recovered suggests that, in tandem with ongoing documentary and topographical research, there is also potential for charting the changing morphology of the settlement over time and, in particular, for determining how much of present-day Bishopstone relates to a post-medieval phase of remodelling.
CONTENTS

1. INTRODUCTION 3

2. GEOPHYSICAL SURVEY 4

3. TEST-PITTING 5

4. PRELIMINARY CONCLUSIONS AND FUTURE WORK 13

5. REFERENCES 15

6. ACKNOWLEDGEMENTS 17

7. APPENDIX 18

8. FIGURES 31
1. INTRODUCTION

The fieldwork reported on here represents preliminary results from one component of a wider multi-disciplinary landscape survey of the Bishopstone Valley launched by the Sussex Archaeological Society during 2002 (Thomas 2002). The general objective of this year’s fieldwork was to establish whether open areas within the core of Bishopstone preserve archaeological evidence for the origins and early development of the settlement (ibid. 4.1, 4.1.2). Informed by recent research on the pre-conquest status of St Andrew’s church (Blair in Thomas 2002; Coombes, forthcoming), and research at other minster settlements, more specific goals included the identification of a putative curvilinear minster precinct, evidence for pre-Conquest occupation in close proximity to the church and potential waterfront activity zones (Thomas 2002, section 5.1).

A two-stage methodology was applied to evaluating the archaeological potential of four discrete areas targeted within the core and on the western edge of the village: a geophysical survey, comprising resistivity and magnetometry, followed by a test-pitting programme designed to evaluate geophysical anomalies and other landscape features (fig. 1). A standard test-pit size, 1m square, was chosen to allow maximum sampling coverage while remaining manageable for hand-excavation and recording (in the case of 1m planning frames). In certain archaeological situations, as for example, to trace the maximum extent of a negative feature, test-pits were extended beyond the standard 1m. The location and, in some cases, size, of test-pits was also guided by landscape features and earthworks, especially in areas which failed to produce significant or coherent geophysical anomalies (see below).

Test-pits were numbered sequentially and the individual contexts and features encountered within each test-pit were included in an overarching sequence to avoid numerical duplication. All test-pits were recorded on pro-forma recording sheets with prompts for context descriptions placed beside a sketched section. Archaeological features were recorded in more detail using context sheets based on the MOLAS system. Sections and plans were drawn at a scale of 1:10.
2. GEOPHYSICAL SURVEY

The geophysical survey was undertaken using an FM36 fluxgate gradiometer (magnetometry) and an RM15 resistivity meter with a twin-probe array, both recently acquired by the Sussex Archaeological Society. Field procedures followed the recommendations set out by the instrument suppliers, Geoscan and by English Heritage (1995). The data was processed using Geoplot v. 3.1 for Windows. The large size of ‘Lady’s Mead’ precluded the use of both techniques in tandem so here only selected areas were subjected to magnetometry, supplementary to a total resistivity survey.

Overall, the geophysical survey results were frustratingly poor; graphic shade-plots of the data were characterized by either undifferentiated swathes (in ‘The Hagg’ and ‘Lady’s Mead’) or indistinct features which, because they were barely distinguishable from slight variations in ‘background noise’, were of little value in locating test-pits. Two notable exceptions included the identification of a circular feature in ‘The Paddock’, confirmed by oral history to be the foundations of a World War II brick-built fuel-tank (Fig.2) and a rectangular feature in ‘Lady’s Mead’, which probably correlates with a lost building depicted on an 18th-century estate map (see below).

How are these generally uninformative results to be interpreted? That the geophysical survey of ‘The Paddock’ produced a clear and defined anomaly suggests that the blame rests not with the equipment and its application but with a combination of extraneous factors which became apparent only retrospectively during test-pitting. Several archaeological features sampled during the latter, especially larger negative features such as pits and ditches, had coarse chalk rubble fills which are unlikely to register as noticeable anomalies using standard instrument settings and field procedures: this problem can only have been compounded by the dry weather which persisted throughout the six weeks of fieldwork.

To test this conclusion, areas identified through test-pitting to be archaeologically sensitive will be resurveyed in winter 2003 using higher resolution field-procedures.
3. TEST-PITTING

Due to the lack of clear geophysical anomalies, test-pitting proved to be the primary means of mapping the archaeology within Bishopstone, and all except one of the areas covered by geophysics - ‘The Paddock’ - were sampled using this technique. While this ultimately reduced the time available for other non-invasive fieldwork such as the earthwork survey, which will be held back until winter 2003, the time and resources invested in excavation paid dividends. Prior to 2002 the only archaeological discoveries on record included a few stray finds of medieval pottery (Bell 1978, 50) and unpublished descriptions of isolated features encountered during the machining of a sewer trench in 1971 (Bell pers. comm.). With the first season of fieldwork completed we now have an overview, albeit piecemeal, of the extent, date and survival of archaeological remains in the key areas available for exploration.

This section should be read in conjunction with a test-pit gazetteer which appears as an appendix at the end of this report. This restricts itself to test-pits which produced significant quantities of pottery and/or discrete archaeological features and provides feature/layer descriptions together with a preliminary assessment of the pottery for individual contexts. Discussion in the main text is similarly restricted to those test-pits which identified discrete archaeological features; in cases where a single feature or structure was sampled by more than one test-pit, the test-pits are grouped accordingly.

3.1. ‘The Hagg’ (1777 estate map; ESRO AMS 5579)

The village green, latterly known as ‘The Egg’, a corruption of ‘The Hagg’ - ‘place cleared of trees’ (Field 1972, 94) - is sited within the core of the settlement to the north of St Andrew’s church and churchyard. This part of the village occupies a chalk spur, capped by the church at 25m OD, which projects into a Downland valley, at the point where it expands into a broad alluvial floodplain (Thomas 2002, section 5.2). The northern side of the green is bounded by a wooded scarp which falls into a steep-sided E-W tributary valley crossed at its head by the Bishopstone road as it exits the north of the settlement. Access to the green from the Bishopstone road is facilitated by an artificially leveled trackway.

A total of 17 test-pits were opened up in this area, including TP 14 located below the wooded scarp at the eastern end of the trackway (see map). Due to inconclusive geophysical results, those test-pits not located over subtle earthworks and breaks of slope, were positioned on transects as part of a random sampling strategy (Fig. 1, nos. 1,3,4,5,7,9 & 10).

Test-pitting revealed that the chalk bedrock in this area is covered by a fairly uniform chalk-loam soil which increased in depth towards the north. This soil contains a wide chronological range of pottery spanning the Saxo-Norman to post-medieval periods (see appendix). The character of the soil and heterogeneous finds assemblage is commensurate with an area which has witnessed intermittent phases of light cultivation, possibly of the kitchen-garden variety, allied with rubbish dumping, possibly for much of the settlement’s history. Archaeological features were revealed only once this layer had been stripped down to the chalk bedrock; the condition of the
latter varied considerably from consolidated bedding-planes to loose, weathered surfaces, the latter predominating to the north.

Test-pits 2, 6 & 15: Timber building and associated features

This group of test-pits identified a concentration of occupational features including two parallel linear cuts interpreted as wall-trenches for a timber building, two post-holes and a large pit (Fig. 3A).

Test-pits 2 and 6, positioned over a curving north-facing scarp, revealed the foundations for the north wall of a building. This consisted of a linear, flat-bottomed cut, [10/33], orientated NE-SW. The dimensions and profile of the cut varied suggesting that it may have been dug in short lengths; in test-pit 6 the southern side of the trench was noticeably straighter and nearly vertical (Fig. 4).

The foundation trench for the opposing side of the structure, [88], was identified in TP 15, allowing the internal width of the building to be estimated to have been a fraction over 4m. The edges denoting the inside and outside of the building were much more clearly differentiated in this test-pit, the former being markedly neater and cut on a near vertical plane (Fig. 4). This section also produced possible evidence for packing material for individual timber uprights - ‘post-ghosts’ were not identified in the apparently uniform fill - including a large flint nodule in the east-facing section and a cluster of complete and fragmentary bun-shaped loom-weights found hard up against the trench’s inside edge.

All three test-pits produced associated post-holes: whereas in TPs 2 & 6 they were located on the inside edge of the wall-trench, in TP 15 the post-hole had ‘clipped’ the foundation trench’s outer edge (Fig. 3A). The outside wall-trench was further truncated in TP6 by a large pit, [40], 1.5m in diameter and 1.2 m deep, with neatly cut, near vertical sides, a flat bottom and a rounded eastern end (Fig. 4). [40] was infilled with a defined sequence of deposits, alternating between coarse chalk rubble [62] and [64] and finer chalky-silts [65] and [63]. Apart from a layer at the very top of the filling sequence, [61], which contained a concentration of oyster shell and some large unabraded sherds of Saxo-Norman pottery, the relative paucity of finds from this feature suggests, that it had been infilled relatively rapidly, probably with cess and with freshly quarried chalk.

Discussion of the building

The Bishopstone structure, which employed continuous or semi-continuous wall-trench as foundations for closely-spaced timber uprights, is representative of a widespread early medieval construction technique. A local parallel is provided by the multi-period site on Rookery Hill, Bishopstone, in the form of structure 67, which is thought to post-date the main phase of early (5-7th) Anglo-Saxon occupation characterised by post-hole buildings, a transition seen at other sites such as Chalton, Hants (Gardiner in Drewett et. al. 1988, 270). A peculiarity of the Bishopstone-village structure is the care taken to cut the inside edge of the wall trench in a vertical plane. This feature, paralleled by a series of Saxo-Norman structures excavated at Botolphs, and Coombe Court in Steyning, both in the Adur Valley, West Sussex, is...
thought to have aided the alignment of the timber uprights, a proposition supported by the distribution of packing material in TP6 (Gardiner 1990; Gardiner in Gardiner & Greatorex 1997).

It remains to be established whether the post-holes revealed in the test-pits are contemporaneous with the building represented by the wall-trenches or belong to an entirely different structure built on the same alignment. Post-holes, interpreted as the footings for a porch, were discovered in association with structures excavated at Coombe Court, Steyning, and Botolphs (Gardiner in Gardiner & Greatorex 1997, 148); however, these were all external, unlike two of the Bishopstone examples. If found to be contemporary, the discovery of wall-trenches with internal post-holes opens up the possibility that a more sophisticated technique was used, involving the placement of the main earth-fast timbers inside an outer protective wall to increase the longevity of the building. Whereas the simple wall-trench technique was current throughout the Anglo-Saxon and Saxo-Norman periods, this so-called ‘narrow aisle’ building tradition appears to have had a restricted Saxo-Norman life-span (Mark Gardiner pers. comm.).

Dating of the building

Arriving at a date for the Bishopstone building ultimately rests with the chronology attached to the pottery recovered; suffice it to say here that the few diagnostic rim-sherds discovered within the foundations preclude other than a broad Saxo-Norman attribution of 950-1150 (see appendix). The diagnostic bun-shaped loom-weights provide a narrower date-bracket covering the 9th to the 11th century although, given the likelihood that they were re-used, they can only provide a broad *terminus post quem* for the construction of the building.

The frustrating inability to date the construction and occupation of this building to within the pre-Conquest period is partly mitigated by other finds demonstrative of a Late Saxon presence on this site. This material includes several unabraded sherds of Late Saxon (probably late 9th- to 10th-century) pottery from [62], one of the pit fills containing re-deposited material from the northern wall-trench [33] (see appendix) and a Late Saxon disc-brooch, of 9th- to 10th-century date, found in a subsoil horizon with TP 24 (located 15m to the NW of TP6), decorated with a backward-turning animal motif (see title page for a drawing reproduced 2:1). It should also be noted that a Norman coin of mid 11th-century date was discovered in the cultivation soil from TP6. Although Norman coins are the commonest type of continental coin to circulate in 11th-century England, they are still relatively rare (Mark Blackburn pers.comm.). Such finds tally with a distinct concentration of Late Saxon ornamental metalwork and coinage recovered from the village and its environs by metal-detectorists (Thomas 2002).

Isolated post-holes and other features

Several other archaeological features, representing a dispersed spread of activity across the village green, were also identified although the significance of these features remains to be established by future open-area excavation. In addition to a further four post-holes, including a pair [69 & 71] in TP12, and a deep stake-hole,
[TP24/116], and two more substantial negative features [TP8/42] & [TP13/82] were also revealed, although the latter we only excavated on a very limited scale. While the majority of these features are undatable, TP27, which contained a homogeneous assemblage of Saxo-Norman pottery, all in an unabraded condition, opens up the possibility that all relate to a relatively short phase of occupation perhaps stretching from the 10th to the 12th centuries.

Mention should also be made of TP14, located below on the grass track leading to the village green, for although it failed to identify discrete archaeological features, the significant post-medieval artefactual assemblage recovered accords with the site of a lost dwelling recorded on an estate map of 1732.

Test-pit 1: burial no.1

A burial, located approximately 1m north of the northern boundary of the cemetery of St Andrew’s church, was partially revealed in the inaugural test-pit. A grave cut could not be distinguished during excavation and the burial was recognised as such only on reaching the skeleton which was exposed from the mid-femur region to the feet. Orientated W-E, with the head at the west end of the grave, the skeleton was laid in a supine position directly on top of the chalk bedrock. No evidence for a coffin or associated grave-furniture was recovered; the burial was covered over once the exposed part of the skeleton had been recorded.

Two possible explanations present themselves for the location of this burial, the reasonable assumption being that it was interred during the lifetime of St Andrew’s church. The first, which presupposes that the cemetery bounds have remained fixed, is that the individual was deliberately interred outside the consecrated area, a burial practice sometimes accorded to social outcasts such as suicide victims until as recently as the 19th century (Daniels 1997, 103-105; Wade-Martins 1980, 189). The second, and more likely scenario, given the discovery of a second extra-mural burial to the west, is that the cemetery has undergone a phase of contraction leaving a ‘halo’ of burials outside the present boundary.

The date of this contraction must remain conjectural until C14 dating of bone samples is undertaken. Historic maps discount the possibility that minor encroachment occurred during the 18th and 19th centuries, although the ruinous state of the cemetery ‘fences’, as recorded in the diocesan survey of 1667, could provide a context for minor reconfigurations to the boundaries during this period (Ford 1992, 54). More compelling is the stratigraphic evidence provided by the second burial which points towards a Saxo-Norman or earlier date. A possible context for the Bishopstone burials is provided by other minster sites which display a period of cemetery contraction during the 10th to 12th centuries, sometimes coupled with evidence for domestic encroachment onto former burial space, as at North Elmham, Norfolk (Wade-Martins 1980). The shrinking of cemeteries during this period is seen as concomitant to the dwindling status of Anglo-Saxon minster churches, the primary arbiters of pastoral care since the 8th century, at the expense of newly founded proprietary churches which eventually acquired the right of burial. As a microcosm of this wider trend, the shrinkage of St Andrew’s cemetery may be directly linked to the fragmentation of an original Anglo-Saxon minster estate centred upon
Bishopstone into smaller, independent parishes (Coombes forthcoming).

3.2. ‘The Allotment’

The area known as ‘the allotment’ comprises a narrow strip of land located between the western boundary of the churchyard and the walled garden formerly attached to Bishopstone Place (Fig. 1). This area has been donated to the church to provide additional burial space in the future, but is currently used as a garden-cum-allotment.

TPs 54 & 59: Burial no. 2 and Saxo-Norman features

The stratigraphically earliest feature encountered within these two closely spaced test-pits comprised a second W-E orientated burial which was exposed from the pelvis downwards, although the majority of the bones from the legs and feet were found to be fragmentary or missing. As with burial no.1, this example betrayed no signs of a grave cut or a coffin and the skeleton was similarly discovered resting directly on the chalk bedrock, at a shallow depth, on this occasion approximately 4m W. of the churchyard boundary.

The burial had been truncated at femur-level by a linear N-S cut, [247/284] (Fig. 3B). This was traced for a distance of 4m in both test-pits and its fill produced redeposited human bone from the burial. The excavation of TPs 47 and 58 revealed that [247/284] must terminate a short distance north of TP 59. At the north end of TP 54, the only area devoid of intercutting features, [247/284] measured 0.38 deep and 0.6m wide and displayed a symmetrical profile with sloping sides and a flat bottom (Fig. 5a). The upper fill, [272], contained a dense concentration of burnt daub and a collection of large unabraded sherds of Saxo-Norman pottery; further pottery of a similar date was also recovered from the underlying fill, [246].

As has been stated, [247/284] was truncated by pits, one partially excavated in each test-pit. The shallowest, [274], partially exposed within the south-west corner of TP 54, was filled by coarse chalk rubble and once bottomed revealed a distinct break of slope in the chalk bedrock which marked the continuation of [247/284] to, and potentially beyond, the southern baulk (Fig. 5a).

[285], a sub-circular pit revealed in TP59, was not bottomed during the excavation. Although it had completely obliterated the eastern side of [247/284], the latter’s opposing side was left intact preserving the feature’s original N-S orientation (Fig. 3B). Unfortunately the fills of [247/284] and [285] were indistinguishable during excavation so it was impossible to separate out the artefacts contextually. Nevertheless, the combined assemblage produced exclusively Saxo-Norman material; in addition to a bun-shaped loom-weight fragment and burnt quernstone, a fine assemblage of Saxo-Norman pottery was recovered including a complete sagging-based cooking-pot discovered resting against the surviving edge of [247/284].

Despite providing a firm Saxo-Norman terminus ante quem for the second extra-mural burial, the dense concentration of activity exposed within this area is difficult to interpret. It may be tentatively proposed that [247/284] represents a wall-trench from a further Saxo-Norman building, an attribution supported by the artefactual
assemblage, especially the burnt daub, the similarity of its dimensions to the foundations discovered on the village green, and its vertical western edge in TP59. Ultimately this suggestion can be verified only by further excavation in the hope of finding parallel and return walls.

TP 45: Later medieval activity

The sequence of deposits encountered in TP45, which includes a demolition horizon containing a profusion of brick, mortared flint and roof tile, is likely to be related to the site of a structure or building (see Appendix). A broad, shallow negative cut filled with very coarse chalk rubble was partially excavated beneath the demolition material; it produced glazed pottery of 13th to 15th-century date.

3.3. ‘Lady’s Mead’ (1732 estate map; ESRO AMS 3472) and walled garden

This was by far the largest area evaluated, comprising six acres of pasture on the western side of the village which stretches down to a prominent valley terrace elevated 5m above the floodplain (Fig. 1). Targets for investigation within this area included archaeological features recorded by Martin Bell during a watching brief of a sewer trench excavated in 1971, a series of linear banks and earthworks located immediately to the south of the walled garden, an isolated building recorded on an estate map of 1732 which also registered a high-resistance geophysical anomaly, and potential activity focussed upon the terrace edge adjacent to the floodplain.

Test-pitting revealed that this area is divided into three broad geological zones aligned with the contours of the valley slope. The lowest-lying band, encompassing the valley terrace, consists of compact clayey silts which vary in colour from orange through to buff and greyish-brown. At approximately 5-6 metres OD, this horizon gives way to a variable band of periglacial solifluction material, comprising Coombe rock, in some places interspersed with bands of vertically aligned flints and pockets of fine silty clay, which in turn gives way to chalk bedrock, outcropping above 10m OD. In some areas these deposits are overlain by colluvium.

Since there was initially no way of knowing whether archaeological features were buried beneath the substantial depth of terrace deposits, the lowest of these three horizons presented the greatest challenge to test-pitting. Ultimately, in those cases where artefactual evidence was scant, and features non-existent, test-pits were abandoned at an arbitrary level, usually between 0.5 and 0.7m below the thin covering of topsoil. The ambiguity surrounding several of these ‘blank’ test-pits was eventually resolved by the discovery of evidence which suggests that the bulk of this material had been laid down by the Bronze Age (see test-pit 19 below). From the results of the test-pitting it may be inferred that archaeological activity within this area was largely confined to the elevated chalk.
TP 18 & 19: Evidence for an isolated post-medieval building and prehistoric activity

These two pits were excavated to test a rectangular high-resistance geophysical anomaly which appeared to correspond with a building depicted on the 1732 estate map. No clear evidence for *in situ* walls or foundations was discovered, although a demolition horizon, or possible crude floor or yard surface, provided confirmatory evidence for the former existence of a flint and tiled-roof building on this site. The roof-tile and pottery recovered suggests that this building was of a single phase and was constructed during the 17th or 18th centuries. It may be conjectured that this building served as a farm or utility outbuilding, possibly attached to Bishopstone Place.

A noteworthy discovery encountered below the post-medieval deposits in TP18 was an indistinct although apparently *in situ* feature which produced fragments of Bronze Age pottery. The high level at which this feature was cut suggests that archaeological features, certainly associated with the past millenium of activity, are unlikely to be masked by the thick terrace deposits flanking the eastern side of the floodplain.

TPs 32, 33 and 38: A boundary ditch and associated features

Three test-pits opened up across a prominent west-facing scarp south of the walled garden traced a linear, N-S ditch, over a distance of 25m (Fig. 6). This varied from 1.35m to 1.05m wide and 0.55m to 0.63m deep and displayed a fairly uniform V-shaped profile (Fig. 7). Its coarse chalk rubble fill contained small and infrequent sherds of Saxo-Norman pottery. The nature of the fill and lack of evidence for gradual silting suggests that the ditch had been deliberately backfilled.

Two substantial post-holes or post-pits, [150] and [178], were discovered approximately two metres apart in TP33; whereas the former was cut into the chalk bedrock, the latter cut directly into the fill of ditch [142/180/184]. The post-holes contained a mixture of Saxo-Norman and early medieval pottery suggestive of a pre 13th-century date.

All the features discovered in these three test-pits were sealed by an accumulation of colluvium observable in the landscape as the west-facing scarp (Fig. 7). The artefactual assemblage recovered from this build-up is suggestive of two principal phases of deposition. Whereas the first may relate to an episode of ploughing during the medieval period, the second is associated with the clearance of late medieval or possibly early post-medieval demolition material, perhaps as a prelude to landscaping for Bishopstone Place, the site of which retains a number of formal landscape features including a Ha Ha overlooking Lady’s Mead.

On current evidence the function of the ditch, which appears to have been deliberately backfilled during the Saxo-Norman period, and the stratigraphically later post-holes is equivocal. It is tempting to assign these features to multiple phases of a boundary feature, although more work is required to establish whether this represents
part of a proposed minster precinct boundary partly fossilized in the curvilinear configuration of the Bishopstone road (Thomas 2002).

TPs 41 & 43: Medieval and later activity

Located in the extreme east of the area, 20m SW of St Andrew’s churchyard and 15m in from the eastern field boundary (Fig. 6), test-pit 43 was fortuitously opened up directly over a sub-circular pit measuring 1.35m in diameter and 1.50m deep (this location had originally been randomly selected to explore one of several discrete patches of stinging nettles). The pit may have originally been dug as a cistern as is suggested by evidence for a waterproof clay lining, [259], a remnant of which survived just above its base at the northern edge (Fig. 5b). Whatever its original purpose, the feature was subsequently filled with domestic refuse incorporating *inter alia* a fine homogeneous assemblage of late 12th-to 13th-century Ringmer-type pottery including cooking pots, bunged-pitchers and chimney-pot (see appendix).

A later phase of activity within this area is represented by a linear arrangement of four post-holes discovered in TP 41, located 23m S. of the walled garden (Fig. 6). Closely spaced and of varying form, ranging from sub-circular through to sub-rectangular, the post-holes produced post-medieval tile and pottery suggesting that they belong to a single, short-lived structural phase. The discovery of two spurs in close proximity to the post-holes raises the possibility that the structure may have provided stabling, possibly for Bishopstone Place.
4. PRELIMINARY CONCLUSIONS AND FUTURE WORK

As an evaluative exercise designed to test the archaeological potential of as wide an area as possible, this year’s fieldwork has inevitably thrown up more questions than it has answers. Nevertheless, it has fulfilled one of the primary objectives by confirming that in situ archaeological evidence for the origins and early development of Bishopstone lie hidden within the core of the present-day settlement.

Having been mapped, the next crucial step is to characterise these archaeological remains through selective open-area excavation, a methodology suited to the shallow, horizontal stratigraphy of rural chalkland sites. Although discussion has already highlighted those areas where this level of investigation will be required, by way of a conclusion it is worth discussing some of the major themes and questions which will underpin subsequent fieldwork strategy at Bishopstone.

A priority for future fieldwork is the characterisation of the Late Saxon to Saxo-Norman occupation revealed within the two open areas abutting the churchyard. Strong circumstantial evidence that this occupation represents some form of high-status or specialised activity already exists in the form of its prominent location in close proximity to the church, and finds such as the Late Saxon disc-brooch and continental coin, which augment an already significant metal-detected assemblage from the village.

The detailed investigation of the building or, what will most likely turn out to be buildings, within the area will form a crucial component of this work. The excavation of the surviving ground-plans in toto would allow the duration of occupation to be established with the recognition of individual constructional phases and open up the potential for the placement and configuration of individual timbers to be revealed. The pursuit of such a goal is driven by more than purely technological interest for at other Saxo-Norman sites the conspicuous consumption of timber has been shown to be another likely indicator of superior status (Gardiner 1992, 33-4).

Such detailed work will impact upon the task of establishing the relationship between this activity and St Andrew’s church which is likely to have had a powerful influence upon the layout of the early settlement from its origins. Drawing upon the results of this year’s work and research undertaken at other minster settlements, one might expect future fieldwork to shed light on the following questions. Firstly, does the occupation encapsulate evidence for the original siting of a religious complex on the Bishopstone spur, perhaps in the form of a series of structures enclosed within a curvilinear precinct boundary? Secondly, is there any evidence that a superior-status residence or ‘messuage’, was implanted within the minster precinct during the Late Anglo-Saxon or Saxo-Norman period in a similar manner to the secular accretions seen at other minster sites such as Steyning, West Sussex (Gardiner in Gardiner & Greatorex 1997, 168-170; Blair 1997)? Given that Bishopstone remained firmly embedded within the fabric of the rural economy, it will be interesting to see whether it displays any parallels with the incipient, ‘pre-urban’ phases of sites like Steyning which subsequently developed into Late Saxon small towns.
If such questions are to be answered, it is important that the evidence gleaned from the excavation of the occupational core of early Bishopstone is complemented by continued work at its periphery. For example, further trial excavation should be undertaken to trace the course of the ditch discovered in Lady’s Mead to determine whether it represents a putative curvilinear precinct boundary. The search for a potential waterfront activity zone - which has so far eluded discovery, should also be extended to take in areas fringing the tributary valley to the north of the chalk spur.

This report has necessarily confined itself to presenting the results of archaeological aspects of work undertaken during the first year in the life of the Bishopstone Project. It should be stated that preliminary results from ongoing documentary research and palaeoenvironmental sampling in the environs of the village have proved equally encouraging (Whittick 2002; Pears 2002).

Envoi

The warning that village plans often relate to post-medieval planning and bear little, if any, resemblance to their medieval predecessors should be especially heeded by researchers working in Downland regions where innovations in farming practices and estate management during the 18th century had a drastic and enduring impact upon the landscape (e.g. Reynolds 1994). In such regions the exploration of village origins must be founded upon an inter-disciplinary approach combining landscape history with selective excavation, the latter to identify and date locational and morphological shifts obscured by the past 300 years of landscape change.

Bishopstone, based within a county which has an important, although comparatively under-explored, contribution to make to the study of medieval settlement, represents an ideal candidate for such research. One can count among its attributes a rich documentary resource headed by an unusually complete manorial archive stretching back to 1371; the architectural gem of St Andrew’s church which displays a range of pre-Conquest architectural features (Blair in Thomas 2002); a fascinating landscape setting located at the interface between coastal, inter-tidal and Downland environments; and finally, as revealed here, an equally rich archaeological resource which we have only just begun to explore in earnest. A final ingredient, an enthusiastic and supportive village population, should ensure that the work encapsulated within the Bishopstone Project will lead to significant advances in our understanding of settlement origins and evolution within Sussex.
5. REFERENCES

Drewett, P., Rudling, D. & Gardiner, M. 1988. The South-East to AD 1000. Longman

Bishopstone 2002 Report 15 http://www.sussexpast.co.uk/

6. ACKNOWLEDGEMENTS

I would like to thank the following all of whom offered useful comments and archaeological advice during visits to Bishopstone: John Blair, Peter Drewett, Sue Hamilton, John Manley, Andrew Reynolds, Simon Roffey and Christopher Whittick. Mark Gardiner has provided much useful information on the structural evidence found at Bishopstone and should also be thanked for taking time out of his busy schedule to offer an opinion of the Bishopstone pottery following a perusal at Barbican House Museum, Lewes.

For the all-important service of galvanizing support and interest for the project within the local community and for organising access to facilities such as the parish hall and entry to the church for site tours, many thanks to the vicar of St Andrew’s, the Rev. John Lloyd-Jones, and Philip Pople. As a fount of knowledge on Bishopstone past and present, the latter’s enthusiastic co-operation and guidance, enlivened with interesting and colourful historical anecdote, benefited our fieldwork immeasurably. Local assistance was also provided by Die Morton, who supplied excellent packed-lunches for members of the team.

The supervisory team, comprising: Katherine Killackey, finds supervisor; Julie Bates, environmental and site supervisor; and Ian Allison, leader of the geophysical survey, coped spectacularly well with the organisational difficulties posed by the atomised nature of the fieldwork, further compounded by having to work remotely from base-camp.

Many thanks to all the volunteers, too great in number to name individually, who took part in this season’s fieldwork. Pamela Coombes should be singled out for her generous loan of a portable computer, for providing an ad hoc taxi and delivery service and for her tireless assistance with finds processing.

Financial support has been generously granted by The Society of the Antiquaries, the Moncrieff Charitable Trust, The British Archaeological Research Trust and CBA South-East.

Special thanks to the landowners Paul Collinson, Jeff White and John Willett who, in granting us access to their land for the purposes of survey and excavation, made this year’s fieldwork possible. We are particularly indebted to Paul who made available land and farm buildings for our base-camp and campsite and for providing crucial logistical back-up on numerous occasions. For a more ‘sanitized’ experienced we also thank John Tattershall for providing a hook-up for portable showers.

It remains to pay a special debt of gratitude to the Bishopstone community who, in spite of potential disruptions to the timeless rhythms of village life, were universally encouraging and supportive.
7. Appendix: A checklist of test-pits excavated in Bishopstone, 2002

The following table is split into two principal columns. Whereas the first records basic descriptive data for individual test-pit contexts, the second provides a breakdown of the pottery recovered giving a sherd-count and a provisional date-range (see below). Test-pits are listed by area and thus correspond to the descriptive sequence given in the main text.

Abbreviations include ‘SN’ for Saxo-Norman and ‘CBM’ for ceramic building material.

Introductory note on the pottery

It should be stressed that all descriptions and attributions given in the following are provisional. No attempt has been made to construct an internal classification of the medieval fabrics based upon a detailed (magnified) examination, as has been attempted for the Adur valley, a goal which must be considered a priority if work is to continue at Bishopstone. Broad date-ranges are based upon subjective observations on fabric, form and decoration, some of which betray major technological changes in methods of production, firing and finishing through the medieval and post-medieval periods.

The majority of the Bishopstone assemblage, which comprises just under 2000 individual sherds, dates to a period extending from the Saxo-Norman era to the 14/15th century. Late medieval and post-medieval pottery spanning the 14th/15th to the 18th century forms the second largest component, although no further discussion of this material occurs here. Pottery falling outside these two chronological ranges includes up to 13 sherds of Late Saxon pottery, all recovered from test-pits located within the core of the village. This material is characterised by reduced, shell and flint-tempered fabric from relatively small cooking pots or storage vessels furnished with simple everted rims. Similar pottery has been discovered in Lewes (Lyne 1997, 82-3, Freke 1976, fig. 5, nos 49 & 50) and further afield in Pevensey, although it is broadly representative of a Mid to Late-Saxon tradition which also extends into West Sussex, as indicated by finds from Medmerry Farm and Chichester.

Earlier periods are represented by a single sherd of Samian ware, a probable sherd of Late Iron Age/Romano-British East Sussex Ware and three small sherds of prehistoric - probably Bronze Age - chalk-tempered pottery.

As mentioned in the main text, medieval pottery from the Ouse Valley area is under-researched and notoriously difficult to date due to a lack of stratified assemblages, the best comparative evidence coming from various excavations in Lewes and a major production site at Ringmer (Gardiner 1992, 85; Lyne 1997, 81). The problem is compounded by the fact that habitation sites relied almost exclusively upon locally-produced pottery which displays a marked degree of conservatism: taken alone, fabric has been observed to be an especially poor indicator of date (Gardiner 1992, 85).

The medieval assemblage at Bishopstone is dominated by hand and tournette-finished wares, predominantly cooking pots and storage vessels with sagging bases, made of medium to coarse flint-tempered fabrics and fired under oxidizing conditions. Decoration, which occurs on only a small component of the assemblage, is restricted to applied, thumb-impressed strapping and stabbing, in the case of jug handles, although wiped surfaces are relatively common. The ubiquitous category, ‘Saxo-Norman to 13th-century’, which applies to
undiagnostic body and base sherds tabulated below, reflects the real difficulties in dating medieval coarse-ware pottery from the Ouse Valley (Lyne 1998, 82-3).

The ability to date any of the Bishopstone pottery more precisely within this broad date-range largely rests on rim-form. Saxo-Norman characteristics include the use of a simple everted rim, sometimes of an applied, tournette-made variety, with an incised line or lines marking the junction between the body and rim. The fabric associated with such rims also tends to be coarser and is frequently reduced dark grey to black. It is of interest that the pie-encrusted rim, a Saxo-Norman feature which occurs with some frequency in pottery assemblages derived from Lewes, is not represented in the Bishopstone collection (Gardiner 1992, 85; Freke 1976).

The simple everted rims characteristic of the Saxo-Norman period were superceded by flanged and lid-seated forms during the latter 12th and 13th centuries; the majority of examples from Bishopstone, including a fine range recovered from pit [206], can be directly paralleled within the assemblage from the Barnett’s Mead kiln, Ringmer, which was active from the late 11th to the mid-16th century. The recovery of Ringmer-type pottery from a number of sites within the lower Ouse Valley, as far south as its (medieval) mouth at Seaford, suggests that Bishopstone lay within the market zone of the Ringmer pottery industry (Hadfield 1981); it is conceivable that the Bishopstone community relied upon this source for most of its domestic requirements.